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Several ocular artifact removal techniques for electroencephalographic data are evaluated in this paper. EEG
recordings are taken from an emotion recognition experiment, which contains several instances of ocular
artifacts like eye blinks and eye movements. The data is preprocessed through a Butterworth band-pass filter
and a 60Hz notch filter to remove most electrical and high frequency noise. Once preprocessed, the data will
be used to evaluate three different types of ocular artifact removal techniques: EOG based linear regression,
Principal Component Analysis, and Independent Component Analysis. A new metric called Strength of
Eye Blink (SEB) is created to automatically determine the removal of different components used in the
Blind Source Separation techniques. Each technique is tested using two different metrics: Kurtosis, and
a new metric called Zero-Mean Normalized Sum Squared Error. The new metric shows that Independent
Component Analysis reduced eye artifacts, the best out of all methods while keeping uncontaminated EEG
signals unchanged (Average SSE of 0.1126).
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1. INTRODUCTION

ElectroEncephaloGraphic (EEG) research is a
wide area of research that encompasses sev-
eral signal processing techniques to describe
psychological phenomena occurring deep inside
the brain. As neurons in the brain fire, these
electric potentials radiate towards the scalp,
where electrodes can detect these potentials in
an EEG recording. Based on the firing loca-
tions of the neurons and the timing of the fir-
ing with respect to a stimulus, spatio-temporal
analysis of EEG signals can be done to analyze
different regions of interest in the brain and
determine. Since EEG recordings detect the
diminutive activations in the brain, there also
other sources of electrical potentials that cor-
rupt the EEG signals detected from the brain.

Therefore, noise/artifact removal is an impor-
tant area of study for EEG research. These
different sources of noise and artifacts must be
removed to ensure a clean EEG signal for ex-
tracting the most salient features of the EEG

signal. A comparison between the recorded
EEG and the ElectroCardioGram (ECG) by
Dirlich et al., [1], show that cardiac field arti-
facts are high amplitude potentials which affect
EEG performance. Dewan et al., [2] were able
to remove these ECG-type artifacts by devel-
oping a noise model based on energy functions
to subtract the noise from the recorded EEG.
Muscle activations, such as jaw clenching and
facial movements, are also potential sources of
artifacts in the EEG. Narasimhan and Dutt [3]
found that muscle artifacts hidden in EEG po-
tentials can be removed by least mean squared
adaptive predictive filtering. De Clercq et al.,
[4] found that using a blind source separation
technique called Canonical Correlation Anal-
ysis proved to be better for muscular artifact
removal than low pass filters and Independent
Component Analysis. Ferdjallah and Barr [5]
developed different types of adaptive FIR and
IIR notch filters to remove power line noise
in EEG signals. The noise/artifact removal
research is most prevalent in the removal of
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Table 3
Sum Squared Error for Each Eye Artifact Re-
moval Technique on Different EEG Channels

Type Linear PCA ICA

Chan 26 1.4446 1.8032 0.5175
Chan 126 0.5984 0.8326 0.0427
Chan 18 0.6726 0.7363 0.1541
Chan 15 (Fz) 1.2159 0.3673 0.1850
Chan 101 (Pz) 0.0159 0.0070 0.0060
Chan 137 (Oz) 0.8937 0.9815 0.0446
Chan 95 (T5) 1.5447 0.3671 0.0476
Chan 178 (T6) 1.2779 1.3803 0.0419
Chan 59 (C3) 0.7380 0.6239 0.0372
Chan 183 (C4) 1.2401 1.8705 0.0491
Average 0.9642 0.8970 0.1126

removing other types of artifacts. We also ob-
served that Independent Component Analysis
gave the best eye artifact removal by removing
the artifacts from the EEG while maintaining
the integrity of the EEG signal based on our
new metric called Zero-Mean Normalized Sum
Squared Error (Average SSE of 0.1126). This
artifact removal technique is able to localize
specific components that are generated by the
eyes, in which our automated component se-
lection criteria, called Strength of Eye Blink
(SEB), defines a threshold by which these
components are removed. Principal Compo-
nent Analysis does remove eye artifacts using
the automated component selection criteria
but tends to remove other EEG components as
well due to the components maximizing vari-
ance. The EOG based linear model also offers
great artifact removal, but due to the EOG
channels having some EEG components, the
linear model affects the clean EEG portions.
For future work, we will experiment with other
types of artifact removal algorithms and de-
velop new algorithms to improve the speed and
accuracy of these techniques.
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