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In this paper, we propose a transformation based approach for off-line signature verification. The Discrete
Cosine Transform (DCT) is used to transform the signature image from spatial domain to frequency domain
for compact representation of the signature sample with few coefficients as features. The proposed approach
comprises of three major phases: Preprocessing, Feature extraction and Classification. The preprocessed
samples are fed into DCT and hence the top-left M × N coefficients are extracted as the representative
features. The Multi-Layer Perceptrons (MLP), a well known classifier is used for classification and the
performance is measured through FAR/FRR metrics. Experiments have been conducted on standard
signature datasets namely: CEDAR and GPDS-160, and MUKOS, a regional language (Kannada) dataset.
The comparative study is also provided with the well known approaches to exhibit the performance of the
proposed approach.
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1. INTRODUCTION

For centuries, signatures have served as a reli-
able and efficient means to detect fraud. Hand-
written signature is considered as one of the
oldest accepted mode of authenticating a per-
son in many of the business transactions. Even
today the signature is still acknowledged as
a principal means of authenticating financial
and other business transactions. In spite of
the technology moving towards paperless of-
fices, usage of paper and signed documents
have tremendously increased leading to the
growth of fraud through forgery. Automatic
signature verification involves aspects from dis-
ciplines ranging from human anatomy to engi-
neering, from neuroscience to computer science
[1].

There are two major methods of signature
verification viz: On-line method (Dynamic)
and Off-line method (Static), depending on
the data acquisition technique and the mode
of verification / identification. On-line signa-
tures are acquired using the special devices

such as graphic tablet, which generates the
electronic signals, representing the signature
trace during the writing process. On-line sig-
natures are acquired at the instance of its reg-
istration beholding the dynamic details viz:
velocity, acceleration, duration, pen lifts, di-
rection of pen movement, pressure and force
applied as the features representing the sig-
nature. The other method uses scanners or
cameras to obtain handwritten signature on
the piece of paper such as the cheques, bank
challans, property documents, etc.. Here the
signature is represented as a grey scale im-
age. Thus, the off-line signatures are the static
image of the registered signature and possess
global and local features viz: signature image
area, height, width, zonal information, impor-
tant points such as end points, cross points,
cusps, loops, and so on. Due to the loss of
dynamic information (feature), off-line signa-
tures are difficult to verify/recognize. In other
words, the on-line process provides a spatio-
temporal representation of the input, where
as the off-line process involves analysis of the
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the remaining 14 genuine and 24 skilled forged
sample features. Similarly 15 genuine sample
features along with 15 skilled forge sample fea-
tures are considered for training in set-2. Now,
the testing is carried out with the remaining 9
genuine and 24 skilled forge samples of the re-
spective signers. Both the experimental set-up
is repeated five times in order to overcome the
effect of the randomness.

From the literature we observed that, Kalera et
al., [35], Chen and Shrihari [34] and Kumar et
al., [13] have experimented on CEDAR dataset
and hence a comparative analysis is given in
Table 3.

5.3. Experimentation on GPDS-160
dataset

The Digital Signal Processing Group (GPDS)
of the Universidad de Las Palmas de Gran
Canaria, has come out with a good scale
dataset called GPDS-300 corpus. GPDS-300 is
a dataset of 300 signers signature samples with
24 genuine and 30 forge of each, summing to a
total of 16200 samples. For our experimenta-
tion, a subset of 160 signers, starting from the
first signer to 160th signer is extracted from the
corpus and named GPDS-160 with 8640 signa-
ture samples including both genuine and forge
signatures. GPDS-300 corpus is available on
[33].

The samples features from all the 8640 signa-
tures from GPDS-160 constitutes the knowl-
edge base. Here, set-1 configuration is initiated
with 10 genuine sample features along with 10
skilled forge samples, choosing randomly, to
train the MLP classifier. Testing is carried out
with the remaining 14 genuine and 30 skilled
forged samples. 15 genuine sample features
along with 15 skilled forge sample features are
randomly chosen to train the MLP classifier
in set-2 configuration. The trained network is
tested against the remaining 9 genuine and 30
skilled forge samples of the respective signers.
The average of five repeated experimental re-
sults are tabulated in Table 5. The efficacy of
the approach is also exhibited through a com-
parative analysis with state-of-art approaches

on GPDS-160 with varying feature set and
classifiers are given in Table 4. The overall
performance results on all the three datasets,
with both experimental set-up is given in Table
5.

6. CONCLUSION

In this paper, we proposed a frequency domain
based approach for off-line signature verifica-
tion. The merits of DCT that captures the sig-
nificant information using low-frequency com-
ponents is exploited in our work and demon-
strated its capability for off-line signature veri-
fication using MLP classifier. Extensive exper-
imentation on standard datasets including re-
gional language dataset and comparative anal-
ysis with the state-of-art approach exhibit the
performance and its suitability for off-line sig-
nature verification.
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Table 3
Comparative Analysis of Experimental Results Obtained for CEDAR Dataset
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Algorithm

Table 4
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Table 5
Summarised Experimental Results : DCT-MLP Approach
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CEDAR 8.42 8.69 6.96 7.58
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